Dispersive growth and laser-induced rippling of large-area singlelayer MoS2 nanosheets by CVD on c-plane sapphire substrate
نویسندگان
چکیده
Vapor-phase growth of large-area two-dimensional (2D) MoS2 nanosheets via reactions of sulfur with MoO3 precursors vaporized and transferred from powder sources onto a target substrate has been rapidly progressing. Recent studies revealed that the growth yield of high quality singlelayer (SL) MoS2 is essentially controlled by quite a few parameters including the temperature, the pressure, the amount/weight of loaded source precursors, and the cleanup of old precursors. Here, we report a dispersive growth method where a shadow mask is encapsulated on the substrate to 'indirectly' supply the source precursors onto the laterally advancing growth front at elevated temperatures. With this method, we have grown large-area (up to millimeters) SL-MoS2 nanosheets with a collective in-plane orientation on c-plane sapphire substrates. Regular ripples (~1 nm in height and ~50 nm in period) have been induced by laser scanning into the SL-MoS2 nanosheets. The MoS2 ripples easily initiate at the grain boundaries and extend along the atomic steps of the substrate. Such laser-induced ripple structures can be fundamental materials for studying their effects, which have been predicted to be significant but hitherto not evidenced, on the electronic, mechanical, and transport properties of SL-MoS2.
منابع مشابه
High Throughput Characterization of Epitaxially Grown Single-Layer MoS2
The growth of single-layer MoS2 with chemical vapor deposition is an established method that can produce large-area and high quality samples. In this article, we investigate the geometrical and optical properties of hundreds of individual single-layer MoS2 crystallites grown on a highly-polished sapphire substrate. Most of the crystallites are oriented along the terraces of the sapphire substra...
متن کاملDependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering.
This work reports a study on the temperature dependence of in-plane E and out-of-plane A1g Raman modes of single-layer (1L) and bi-layer (2L) MoS2 films on sapphire (epitaxial) and SiO2 (transferred) substrates as well as bulk MoS2 single crystals in a temperature range of 25-500 °C. For the films on the transferred SiO2 substrate, the in-plane E mode is only weakly affected by the substrate, w...
متن کاملLayered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth
Most III-nitride semiconductors are grown on non-lattice-matched substrates like sapphire or silicon due to the extreme difficulty of obtaining a native GaN substrate. We show that several layered transition-metal dichalcogenides are closely lattice-matched to GaN and report the growth of GaN on a range of such layered materials. We report detailed studies of the growth of GaN on mechanically-e...
متن کاملEffects of substrate annealing on the gold-catalyzed growth of ZnO nanostructures
The effects of thermal substrate pretreatment on the growth of Au-catalyzed ZnO nanostructures by pulsed laser deposition are investigated. C-plane sapphire substrates are annealed prior to deposition of a thin Au layer. Subsequent ZnO growths on substrates annealed above 1,200°C resulted in a high density of nanosheets and nanowires, whereas lower temperatures led to low nanostructure densitie...
متن کاملAbstract Submitted for the MAR14 Meeting of The American Physical Society Synthesis and Photoresponse of the Graphene-MoS2 in-plane Heterostructures1
Submitted for the MAR14 Meeting of The American Physical Society Synthesis and Photoresponse of the Graphene-MoS2 in-plane Heterostructures1 XI LING, YUXUAN LIN, QIONG MA, JING KONG, MILDRED DRESSELHAUS, MIT — The heterostructures of two-dimensional materials offer a possibility to create high performance electronic and optoelectronic devices. Here, we present the construction of both the stack...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015